IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03278-w.html
   My bibliography  Save this article

A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis

Author

Listed:
  • T. Azad

    (Queen’s University)

  • H. J. Janse van Rensburg

    (Queen’s University)

  • E. D. Lightbody

    (Queen’s University)

  • B. Neveu

    (Laval University)

  • A. Champagne

    (Laval University)

  • A. Ghaffari

    (Queen’s University)

  • V. R. Kay

    (Queen’s University)

  • Y. Hao

    (Queen’s University)

  • H. Shen

    (Roswell Park Cancer Institute)

  • B. Yeung

    (Queen’s University)

  • B. A. Croy

    (Queen’s University)

  • K. L. Guan

    (University of California at San Diego)

  • F. Pouliot

    (Laval University)

  • J. Zhang

    (Roswell Park Cancer Institute)

  • C. J. B. Nicol

    (Queen’s University)

  • X. Yang

    (Queen’s University)

Abstract

The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.

Suggested Citation

  • T. Azad & H. J. Janse van Rensburg & E. D. Lightbody & B. Neveu & A. Champagne & A. Ghaffari & V. R. Kay & Y. Hao & H. Shen & B. Yeung & B. A. Croy & K. L. Guan & F. Pouliot & J. Zhang & C. J. B. Nico, 2018. "A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03278-w
    DOI: 10.1038/s41467-018-03278-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03278-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03278-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmen Oi Ning Leung & Yang Yang & Rainbow Wing Hei Leung & Karl Kam Hei So & Hai Jun Guo & Martina Mang Leng Lei & Gregory Kenneth Muliawan & Yuan Gao & Qian Qian Yu & Jing Ping Yun & Stephanie Ma & , 2023. "Broad-spectrum kinome profiling identifies CDK6 upregulation as a driver of lenvatinib resistance in hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Rui Li & Jingchen Shao & Young-June Jin & Haruya Kawase & Yu Ting Ong & Kerstin Troidl & Qi Quan & Lei Wang & Remy Bonnavion & Astrid Wietelmann & Francoise Helmbacher & Michael Potente & Johannes Gra, 2023. "Endothelial FAT1 inhibits angiogenesis by controlling YAP/TAZ protein degradation via E3 ligase MIB2," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03278-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.