IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03248-2.html
   My bibliography  Save this article

Reagent-controlled regiodivergent ring expansions of steroids

Author

Listed:
  • Manwika Charaschanya

    (University of Kansas)

  • Jeffrey Aubé

    (University of North Carolina)

Abstract

Ring expansion provides a powerful way of introducing a heteroatom substituent into a carbocyclic framework. However, such reactions are often limited by the tendency of a given substrate to afford only one of the two rearrangement products or fail to achieve high selectivity at all. These limitations are particularly acute when seeking to carry out late-stage functionalization of natural products as starting points in drug discovery. In this work, we present a stereoelectronically controlled ring expansion sequence towards selective and flexible access to complementary ring systems derived from common steroidal substrates. Chemical diversification of the reaction intermediate affords over 100 isomerically pure analogs with spatial and functional diversity. This regiodivergent rearrangement, and the concept of using chiral reagents to affect regiocontrol in chiral natural products, should be broadly applicable to late-stage natural product diversification programs.

Suggested Citation

  • Manwika Charaschanya & Jeffrey Aubé, 2018. "Reagent-controlled regiodivergent ring expansions of steroids," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03248-2
    DOI: 10.1038/s41467-018-03248-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03248-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03248-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan-Tao Meng & Ya-Nan Wang & Xiao-Yan Qin & Shi-Jun Li & Jing Li & Wen-Juan Hao & Shu-Jiang Tu & Yu Lan & Bo Jiang, 2022. "Azoarene activation for Schmidt-type reaction and mechanistic insights," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03248-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.