IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03136-9.html
   My bibliography  Save this article

Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework

Author

Listed:
  • Chao Liu

    (Chinese Academy of Sciences)

  • Tao Li

    (ShanghaiTech University)

  • Hadi Abroshan

    (Carnegie Mellon University)

  • Zhimin Li

    (Chinese Academy of Sciences)

  • Chen Zhang

    (University of Missouri-Columbia)

  • Hyung J. Kim

    (Carnegie Mellon University
    Korea Institute for Advanced Study)

  • Gao Li

    (Chinese Academy of Sciences)

  • Rongchao Jin

    (Carnegie Mellon University)

Abstract

We report the synthesis and crystal structure of a nanocluster composed of 23 silver atoms capped by 8 phosphine and 18 phenylethanethiolate ligands. X-ray crystallographic analysis reveals that the kernel of the Ag nanocluster adopts a helical face-centered cubic structure with C2 symmetry. The thiolate ligands show two binding patterns with the surface Ag atoms: tri- and tetra-podal types. The tetra-coordination mode of thiolate has not been found in previous Ag nanoclusters. No counter ion (e.g., Na+ and NO3−) is found in the single-crystal and the absence of such ions is also confirmed by X-ray photoelectron spectroscopy analysis, indicating electrical neutrality of the nanocluster. Interestingly, the nanocluster has an open shell electronic structure (i.e., 23(Ag 5s1)–18(SR) = 5e), as confirmed by electron paramagnetic resonance spectroscopy. Time-dependent density functional theory calculations are performed to correlate the structure and optical absorption/emission spectra of the Ag nanocluster.

Suggested Citation

  • Chao Liu & Tao Li & Hadi Abroshan & Zhimin Li & Chen Zhang & Hyung J. Kim & Gao Li & Rongchao Jin, 2018. "Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03136-9
    DOI: 10.1038/s41467-018-03136-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03136-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03136-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li-Juan Liu & Fahri Alkan & Shengli Zhuang & Dongyi Liu & Tehseen Nawaz & Jun Guo & Xiaozhou Luo & Jian He, 2023. "Atomically precise gold nanoclusters at the molecular-to-metallic transition with intrinsic chirality from surface layers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03136-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.