IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03093-3.html
   My bibliography  Save this article

A light carbon isotope composition for the Sun

Author

Listed:
  • James R. Lyons

    (Arizona State University)

  • Ehsan Gharib-Nezhad

    (Arizona State University)

  • Thomas R. Ayres

    (University of Colorado)

Abstract

Measurements by the Genesis mission have shown that solar wind oxygen is depleted in the rare isotopes, 17O and 18O, by approximately 80 and 100‰, respectively, relative to Earth’s oceans, with inferred photospheric values of about −60‰ for both isotopes. Direct astronomical measurements of CO absorption lines in the solar photosphere have previously yielded a wide range of O isotope ratios. Here, we reanalyze the line strengths for high-temperature rovibrational transitions in photospheric CO from ATMOS FTS data, and obtain an 18O depletion of δ18O = −50 ± 11‰ (1σ). From the same analysis we find a carbon isotope ratio of δ13C = −48 ± 7‰ (1σ) for the photosphere. This implies that the primary reservoirs of carbon on the terrestrial planets are enriched in 13C relative to the bulk material from which the solar system formed, possibly as a result of CO self-shielding or inheritance from the parent cloud.

Suggested Citation

  • James R. Lyons & Ehsan Gharib-Nezhad & Thomas R. Ayres, 2018. "A light carbon isotope composition for the Sun," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03093-3
    DOI: 10.1038/s41467-018-03093-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03093-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03093-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03093-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.