IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02923-8.html
   My bibliography  Save this article

Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes

Author

Listed:
  • Hua Li

    (University of California at Davis)

  • Sharon Aviran

    (University of California at Davis)

Abstract

RNA plays key regulatory roles in diverse cellular processes, where its functionality often derives from folding into and converting between structures. Many RNAs further rely on co-existence of alternative structures, which govern their response to cellular signals. However, characterizing heterogeneous landscapes is difficult, both experimentally and computationally. Recently, structure profiling experiments have emerged as powerful and affordable structure characterization methods, which improve computational structure prediction. To date, efforts have centered on predicting one optimal structure, with much less progress made on multiple-structure prediction. Here, we report a probabilistic modeling approach that predicts a parsimonious set of co-existing structures and estimates their abundances from structure profiling data. We demonstrate robust landscape reconstruction and quantitative insights into structural dynamics by analyzing numerous data sets. This work establishes a framework for data-directed characterization of structure landscapes to aid experimentalists in performing structure-function studies.

Suggested Citation

  • Hua Li & Sharon Aviran, 2018. "Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02923-8
    DOI: 10.1038/s41467-018-02923-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02923-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02923-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Yu & Pan Li & Qiangfeng Cliff Zhang & Lin Hou, 2022. "Differential analysis of RNA structure probing experiments at nucleotide resolution: uncovering regulatory functions of RNA structure," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Simone Fiori & Andrea Vitali, 2019. "Statistical Modeling of Trivariate Static Systems: Isotonic Models," Data, MDPI, vol. 4(1), pages 1-29, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02923-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.