IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02893-x.html
   My bibliography  Save this article

Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair

Author

Listed:
  • Wei-Ting Lu

    (MRC Toxicology Unit)

  • Ben R. Hawley

    (MRC Toxicology Unit)

  • George L. Skalka

    (MRC Toxicology Unit)

  • Robert A. Baldock

    (University of Sussex
    University of Pittsburgh Cancer Institute, University of Pittsburgh)

  • Ewan M. Smith

    (MRC Toxicology Unit)

  • Aldo S. Bader

    (MRC Toxicology Unit)

  • Michal Malewicz

    (MRC Toxicology Unit)

  • Felicity Z. Watts

    (University of Sussex)

  • Ania Wilczynska

    (MRC Toxicology Unit)

  • Martin Bushell

    (MRC Toxicology Unit)

Abstract

The error-free and efficient repair of DNA double-stranded breaks (DSBs) is extremely important for cell survival. RNA has been implicated in the resolution of DNA damage but the mechanism remains poorly understood. Here, we show that miRNA biogenesis enzymes, Drosha and Dicer, control the recruitment of repair factors from multiple pathways to sites of damage. Depletion of Drosha significantly reduces DNA repair by both homologous recombination (HR) and non-homologous end joining (NHEJ). Drosha is required within minutes of break induction, suggesting a central and early role for RNA processing in DNA repair. Sequencing of DNA:RNA hybrids reveals RNA invasion around DNA break sites in a Drosha-dependent manner. Removal of the RNA component of these structures results in impaired repair. These results show how RNA can be a direct and critical mediator of DNA damage repair in human cells.

Suggested Citation

  • Wei-Ting Lu & Ben R. Hawley & George L. Skalka & Robert A. Baldock & Ewan M. Smith & Aldo S. Bader & Michal Malewicz & Felicity Z. Watts & Ania Wilczynska & Martin Bushell, 2018. "Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02893-x
    DOI: 10.1038/s41467-018-02893-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02893-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02893-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Gómez-Cabello & George Pappas & Diana Aguilar-Morante & Christoffel Dinant & Jiri Bartek, 2022. "CtIP-dependent nascent RNA expression flanking DNA breaks guides the choice of DNA repair pathway," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Sofie Bergstrand & Eleanor M. O’Brien & Christos Coucoravas & Dominika Hrossova & Dimitra Peirasmaki & Sandro Schmidli & Soniya Dhanjal & Chiara Pederiva & Lee Siggens & Oliver Mortusewicz & Julienne , 2022. "Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. S. Cohen & A. Guenolé & I. Lazar & A. Marnef & T. Clouaire & D. V. Vernekar & N. Puget & V. Rocher & C. Arnould & M. Aguirrebengoa & M. Genais & N. Firmin & R. A. Shamanna & R. Mourad & V. A. Bohr & V, 2022. "A POLD3/BLM dependent pathway handles DSBs in transcribed chromatin upon excessive RNA:DNA hybrid accumulation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Aldo S. Bader & Martin Bushell, 2023. "iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02893-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.