IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02887-9.html
   My bibliography  Save this article

Prediction complements explanation in understanding the developing brain

Author

Listed:
  • Monica D. Rosenberg

    (Yale University)

  • B. J. Casey

    (Yale University)

  • Avram J. Holmes

    (Yale University
    Yale University)

Abstract

A central aim of human neuroscience is understanding the neurobiology of cognition and behavior. Although we have made significant progress towards this goal, reliance on group-level studies of the developed adult brain has limited our ability to explain population variability and developmental changes in neural circuitry and behavior. In this review, we suggest that predictive modeling, a method for predicting individual differences in behavior from brain features, can complement descriptive approaches and provide new ways to account for this variability. Highlighting the outsized scientific and clinical benefits of prediction in developmental populations including adolescence, we show that predictive brain-based models are already providing new insights on adolescent-specific risk-related behaviors. Together with large-scale developmental neuroimaging datasets and complementary analytic approaches, predictive modeling affords us the opportunity and obligation to identify novel treatment targets and individually tailor the course of interventions for developmental psychopathologies that impact so many young people today.

Suggested Citation

  • Monica D. Rosenberg & B. J. Casey & Avram J. Holmes, 2018. "Prediction complements explanation in understanding the developing brain," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02887-9
    DOI: 10.1038/s41467-018-02887-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02887-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02887-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Xinyue & Demir, Emrah & Eyers, Daniel, 2024. "Exploring collaborative decision-making: A quasi-experimental study of human and Generative AI interaction," Technology in Society, Elsevier, vol. 78(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02887-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.