IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02877-x.html
   My bibliography  Save this article

A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production

Author

Listed:
  • Mengyan Hou

    (Fudan University)

  • Long Chen

    (Fudan University)

  • Zhaowei Guo

    (Fudan University)

  • Xiaoli Dong

    (Fudan University)

  • Yonggang Wang

    (Fudan University)

  • Yongyao Xia

    (Fudan University)

Abstract

Existing chlor-alkali processes generally use asbestos, mercury or fluorine-containing ion-exchange membranes to separate the simultaneous chlorine production on the anode and hydrogen production on the cathode, and form sodium hydroxide in the electrolyte. Here, using the Na+ de-intercalation/intercalation of a Na0.44MnO2 electrode as a redox mediator, we decouple the chlor-alkali process into two independent steps: a H2 production step with the NaOH formation in the electrolyte and a Cl2 production step. The first step involves a cathodic H2 evolution reaction (H2O → H2) and an anodic Na+ de-intercalation reaction (Na0.44MnO2 → Na0.44−xMnO2), during which NaOH is produced in the electrolyte solution. The second step depends on a cathodic Na+ intercalation reaction (Na0.44−xMnO2 → Na0.44MnO2) and an anodic Cl2 production (Cl → Cl2). The cycle of the two steps provides a membrane-free process, which is potentially a promising direction for developing clean chlor-alkali technology.

Suggested Citation

  • Mengyan Hou & Long Chen & Zhaowei Guo & Xiaoli Dong & Yonggang Wang & Yongyao Xia, 2018. "A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02877-x
    DOI: 10.1038/s41467-018-02877-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02877-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02877-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianan Gao & Qingquan Ma & Zhiwei Wang & Bruce E. Rittmann & Wen Zhang, 2024. "Direct electrosynthesis and separation of ammonia and chlorine from waste streams via a stacked membrane-free electrolyzer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02877-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.