Author
Listed:
- Alberto Cini
(University of Florence)
- Matteo Mannini
(University of Florence)
- Federico Totti
(University of Florence)
- Maria Fittipaldi
(University of Florence)
- Gabriele Spina
(University of Florence)
- Aleksandr Chumakov
(ESRF-The European Synchrotron, CS40220)
- Rudolf Rüffer
(ESRF-The European Synchrotron, CS40220)
- Andrea Cornia
(University of Modena and Reggio Emilia)
- Roberta Sessoli
(University of Florence)
Abstract
The use of single molecule magnets (SMMs) as cornerstone elements in spintronics and quantum computing applications demands that magnetic bistability is retained when molecules are interfaced with solid conducting surfaces. Here, we employ synchrotron Mössbauer spectroscopy to investigate a monolayer of a tetrairon(III) (Fe4) SMM chemically grafted on a gold substrate. At low temperature and zero magnetic field, we observe the magnetic pattern of the Fe4 molecule, indicating slow spin fluctuations compared to the Mössbauer timescale. Significant structural deformations of the magnetic core, induced by the interaction with the substrate, as predicted by ab initio molecular dynamics, are also observed. However, the effects of the modifications occurring at the individual iron sites partially compensate each other, so that slow magnetic relaxation is retained on the surface. Interestingly, these deformations escaped detection by conventional synchrotron-based techniques, like X-ray magnetic circular dichroism, thus highlighting the power of synchrotron Mössbauer spectroscopy for the investigation of hybrid interfaces.
Suggested Citation
Alberto Cini & Matteo Mannini & Federico Totti & Maria Fittipaldi & Gabriele Spina & Aleksandr Chumakov & Rudolf Rüffer & Andrea Cornia & Roberta Sessoli, 2018.
"Mössbauer spectroscopy of a monolayer of single molecule magnets,"
Nature Communications, Nature, vol. 9(1), pages 1-9, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02840-w
DOI: 10.1038/s41467-018-02840-w
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02840-w. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.