IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02831-x.html
   My bibliography  Save this article

A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus

Author

Listed:
  • Hanna Nishida

    (National Institute for Basic Biology
    SOKENDAI (The Graduate University for Advanced Studies)
    University of Tsukuba)

  • Sachiko Tanaka

    (National Institute for Basic Biology)

  • Yoshihiro Handa

    (National Institute for Basic Biology)

  • Momoyo Ito

    (University of Tsukuba)

  • Yuki Sakamoto

    (Tokyo University of Science)

  • Sachihiro Matsunaga

    (Tokyo University of Science
    Tokyo University of Science)

  • Shigeyuki Betsuyaku

    (University of Tsukuba)

  • Kenji Miura

    (University of Tsukuba)

  • Takashi Soyano

    (National Institute for Basic Biology
    SOKENDAI (The Graduate University for Advanced Studies))

  • Masayoshi Kawaguchi

    (National Institute for Basic Biology
    SOKENDAI (The Graduate University for Advanced Studies))

  • Takuya Suzaki

    (University of Tsukuba)

Abstract

Legumes and rhizobia establish symbiosis in root nodules. To balance the gains and costs associated with the symbiosis, plants have developed two strategies for adapting to nitrogen availability in the soil: plants can regulate nodule number and/or stop the development or function of nodules. Although the former is accounted for by autoregulation of nodulation, a form of systemic long-range signaling, the latter strategy remains largely enigmatic. Here, we show that the Lotus japonicus NITRATE UNRESPONSIVE SYMBIOSIS 1 (NRSYM1) gene encoding a NIN-LIKE PROTEIN transcription factor acts as a key regulator in the nitrate-induced pleiotropic control of root nodule symbiosis. NRSYM1 accumulates in the nucleus in response to nitrate and directly regulates the production of CLE-RS2, a root-derived mobile peptide that acts as a negative regulator of nodule number. Our data provide the genetic basis for how plants respond to the nitrogen environment and control symbiosis to achieve proper plant growth.

Suggested Citation

  • Hanna Nishida & Sachiko Tanaka & Yoshihiro Handa & Momoyo Ito & Yuki Sakamoto & Sachihiro Matsunaga & Shigeyuki Betsuyaku & Kenji Miura & Takashi Soyano & Masayoshi Kawaguchi & Takuya Suzaki, 2018. "A NIN-LIKE PROTEIN mediates nitrate-induced control of root nodule symbiosis in Lotus japonicus," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02831-x
    DOI: 10.1038/s41467-018-02831-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02831-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02831-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Wang & Zhimin Qiu & Wenjun Zhu & Nan Wang & Mengyan Bai & Huaqin Kuang & Chenlin Cai & Xiangbin Zhong & Fanjiang Kong & Peitao Lü & Yuefeng Guan, 2023. "The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Jieshun Lin & Yuda Purwana Roswanjaya & Wouter Kohlen & Jens Stougaard & Dugald Reid, 2021. "Nitrate restricts nodule organogenesis through inhibition of cytokinin biosynthesis in Lotus japonicus," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Momoyo Ito & Yuri Tajima & Mari Ogawa-Ohnishi & Hanna Nishida & Shohei Nosaki & Momona Noda & Naoyuki Sotta & Kensuke Kawade & Takehiro Kamiya & Toru Fujiwara & Yoshikatsu Matsubayashi & Takuya Suzaki, 2024. "IMA peptides regulate root nodulation and nitrogen homeostasis by providing iron according to internal nitrogen status," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02831-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.