IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02800-w.html
   My bibliography  Save this article

Single-cell replication profiling to measure stochastic variation in mammalian replication timing

Author

Listed:
  • Vishnu Dileep

    (Florida State University)

  • David M. Gilbert

    (Florida State University)

Abstract

Mammalian DNA replication is regulated via multi-replicon segments that replicate in a defined temporal order during S-phase. Further, early/late replication of RDs corresponds to active/inactive chromatin interaction compartments. Although replication origins are selected stochastically, variation in replication timing is poorly understood. Here we devise a strategy to measure variation in replication timing using DNA copy number in single mouse embryonic stem cells. We find that borders between replicated and unreplicated DNA are highly conserved between cells, demarcating active and inactive compartments of the nucleus. Fifty percent of replication events deviated from their average replication time by ± 15% of S phase. This degree of variation is similar between cells, between homologs within cells and between all domains genomewide, regardless of their replication timing. These results demonstrate that stochastic variation in replication timing is independent of elements that dictate timing or extrinsic environmental variation.

Suggested Citation

  • Vishnu Dileep & David M. Gilbert, 2018. "Single-cell replication profiling to measure stochastic variation in mammalian replication timing," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02800-w
    DOI: 10.1038/s41467-017-02800-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02800-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02800-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuangyi Xu & Ning Wang & Michael V. Zuccaro & Jeannine Gerhardt & Rajan Iyyappan & Giovanna Nascimento Scatolin & Zongliang Jiang & Timour Baslan & Amnon Koren & Dieter Egli, 2024. "DNA replication in early mammalian embryos is patterned, predisposing lamina-associated regions to fragility," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Stefano Gnan & Joseph M. Josephides & Xia Wu & Manuela Spagnuolo & Dalila Saulebekova & Mylène Bohec & Marie Dumont & Laura G. Baudrin & Daniele Fachinetti & Sylvain Baulande & Chun-Long Chen, 2022. "Kronos scRT: a uniform framework for single-cell replication timing analysis," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02800-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.