IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02728-1.html
   My bibliography  Save this article

Thermal influences on spontaneous rock dome exfoliation

Author

Listed:
  • Brian D. Collins

    (U.S. Geological Survey)

  • Greg M. Stock

    (Yosemite National Park)

  • Martha-Cary Eppes

    (University of North Carolina - Charlotte)

  • Scott W. Lewis

    (Condor Earth Technologies, Inc.)

  • Skye C. Corbett

    (U.S. Geological Survey)

  • Joel B. Smith

    (U.S. Geological Survey)

Abstract

Rock domes, with their onion-skin layers of exfoliation sheets, are among the most captivating landforms on Earth. Long recognized as integral in shaping domes, the exact mechanism(s) by which exfoliation occurs remains enigmatic, mainly due to the lack of direct observations of natural events. In August 2014, during the hottest days of summer, a granitic dome in California, USA, spontaneously exfoliated; witnesses observed extensive cracking, including a ~8000 kg sheet popping into the air. Subsequent exfoliation episodes during the following two summers were recorded by instrumentation that captured—for the first time—exfoliation deformation and stress conditions. Here we show that thermal cycling and cumulative dome surface heating can induce subcritical cracking that culminates in seemingly spontaneous exfoliation. Our results indicate that thermal stresses—largely discounted in dome formation literature—can play a key role in triggering exfoliation and therefore may be an important control for shaping domes worldwide.

Suggested Citation

  • Brian D. Collins & Greg M. Stock & Martha-Cary Eppes & Scott W. Lewis & Skye C. Corbett & Joel B. Smith, 2018. "Thermal influences on spontaneous rock dome exfoliation," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02728-1
    DOI: 10.1038/s41467-017-02728-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02728-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02728-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Lin & Yang, Daoxue & Zhao, Kui & Zhao, Yunge & Jin, Jiefang & Wang, Xiaojun & Zhu, Longji & Wang, Xing & Li, Congming, 2024. "Investigation of high-temperature effects on the strengthening and degradation of mechanical property in sandstone," Applied Energy, Elsevier, vol. 357(C).
    2. Marcos Eduardo Hartwig & Lázaro Valentin Zuquette, 2022. "Rockfall danger and risk analysis around a granite inselberg in the Vila Velha city (southeastern Brazil)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3309-3326, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02728-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.