IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02554-5.html
   My bibliography  Save this article

A general and flexible method for signal extraction from single-cell RNA-seq data

Author

Listed:
  • Davide Risso

    (Weill Cornell Medicine)

  • Fanny Perraudeau

    (University of California)

  • Svetlana Gribkova

    (Université Paris Diderot)

  • Sandrine Dudoit

    (University of California
    University of California)

  • Jean-Philippe Vert

    (PSL Research University
    Institut Curie
    INSERM U900
    Ecole Normale Supérieure)

Abstract

Single-cell RNA-sequencing (scRNA-seq) is a powerful high-throughput technique that enables researchers to measure genome-wide transcription levels at the resolution of single cells. Because of the low amount of RNA present in a single cell, some genes may fail to be detected even though they are expressed; these genes are usually referred to as dropouts. Here, we present a general and flexible zero-inflated negative binomial model (ZINB-WaVE), which leads to low-dimensional representations of the data that account for zero inflation (dropouts), over-dispersion, and the count nature of the data. We demonstrate, with simulated and real data, that the model and its associated estimation procedure are able to give a more stable and accurate low-dimensional representation of the data than principal component analysis (PCA) and zero-inflated factor analysis (ZIFA), without the need for a preliminary normalization step.

Suggested Citation

  • Davide Risso & Fanny Perraudeau & Svetlana Gribkova & Sandrine Dudoit & Jean-Philippe Vert, 2018. "A general and flexible method for signal extraction from single-cell RNA-seq data," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02554-5
    DOI: 10.1038/s41467-017-02554-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02554-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02554-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lulu Shang & Xiang Zhou, 2022. "Spatially aware dimension reduction for spatial transcriptomics," Nature Communications, Nature, vol. 13(1), pages 1-22, December.
    2. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Qi Liu & Charles A Herring & Quanhu Sheng & Jie Ping & Alan J Simmons & Bob Chen & Amrita Banerjee & Wei Li & Guoqiang Gu & Robert J Coffey & Yu Shyr & Ken S Lau, 2018. "Quantitative assessment of cell population diversity in single-cell landscapes," PLOS Biology, Public Library of Science, vol. 16(10), pages 1-29, October.
    4. Yue Cao & Pengyi Yang & Jean Yee Hwa Yang, 2021. "A benchmark study of simulation methods for single-cell RNA sequencing data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Xiaotian Wu & Hao Wu & Zhijin Wu, 2021. "Penalized Latent Dirichlet Allocation Model in Single-Cell RNA Sequencing," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(3), pages 543-562, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02554-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.