IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02552-7.html
   My bibliography  Save this article

Picosecond pulse shaping of single photons using quantum dots

Author

Listed:
  • B. C. Pursley

    (NRC Research Associate residing at the Naval Research Laboratory)

  • S. G. Carter

    (Naval Research Laboratory)

  • M. K. Yakes

    (Naval Research Laboratory)

  • A. S. Bracker

    (Naval Research Laboratory)

  • D. Gammon

    (Naval Research Laboratory)

Abstract

Quantum dots (QDs) are an excellent single-photon source that can be combined with a spin quantum memory. Many quantum technologies require increased control over the characteristics of emitted photons. A powerful approach is to trigger coherent Raman photons from QDs with a Λ energy-level system, such as the spin singlet–triplet system in two coupled QDs. The temporal and spectral behavior of single Raman photons can be varied simply by modifying the excitation source. Here, we demonstrate control of the single-photon pulse shape in a solid-state system on a timescale much shorter than the radiative lifetime, in addition to control of the frequency and bandwidth. We achieve a photon pulse width of 80 ps—an order of magnitude shorter than the exciton lifetime. Possible applications include time-bin encoding of quantum information, matching photons from different sources, and efficient single-photon transfer in a quantum network.

Suggested Citation

  • B. C. Pursley & S. G. Carter & M. K. Yakes & A. S. Bracker & D. Gammon, 2018. "Picosecond pulse shaping of single photons using quantum dots," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02552-7
    DOI: 10.1038/s41467-017-02552-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02552-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02552-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Jonas & D. Heinze & E. Schöll & P. Kallert & T. Langer & S. Krehs & A. Widhalm & K. D. Jöns & D. Reuter & S. Schumacher & A. Zrenner, 2022. "Nonlinear down-conversion in a single quantum dot," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02552-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.