IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02544-7.html
   My bibliography  Save this article

High temperature limit of photosynthetic excitons

Author

Listed:
  • Margus Rätsep

    (University of Tartu)

  • Renata Muru

    (University of Tartu)

  • Arvi Freiberg

    (University of Tartu
    University of Tartu)

Abstract

Excitons in light-harvesting complexes are known to significantly improve solar-energy harnessing. Here we demonstrate photosynthetic excitons at super-physiological temperatures reaching 60–80 °C in different species of mesophilic photosynthetic bacteria. It is shown that the survival of light-harvesting excitons in the peripheral LH2 antennae is restricted by thermal decomposition of the pigment–protein complex rather than by any intrinsic property of excitons. The regular spatial organization of the bacteriochlorophyll a pigments supporting excitons in this complex is lost upon the temperature-induced breakdown of its tertiary structure. Secondary structures of the complexes survive even higher temperatures. The discovered pivotal role of the protein scaffold in the stabilization of excitons comprises an important aspect of structure–function relationship in biology. These results also intimately entangle the fundamental issues of quantum mechanical concepts in biology and in the folding of proteins.

Suggested Citation

  • Margus Rätsep & Renata Muru & Arvi Freiberg, 2018. "High temperature limit of photosynthetic excitons," Nature Communications, Nature, vol. 9(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02544-7
    DOI: 10.1038/s41467-017-02544-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02544-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02544-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02544-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.