Author
Listed:
- Soo Jin Kim
(Stanford University
Korea University)
- Ju-Hyung Kang
(Stanford University)
- Mehmet Mutlu
(Stanford University)
- Joonsuk Park
(Stanford University)
- Woosung Park
(Stanford University)
- Kenneth E. Goodson
(Stanford University)
- Robert Sinclair
(Stanford University)
- Shanhui Fan
(Stanford University)
- Pieter G. Kik
(University of Central Florida)
- Mark L. Brongersma
(Stanford University
Stanford University)
Abstract
The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Suggested Citation
Soo Jin Kim & Ju-Hyung Kang & Mehmet Mutlu & Joonsuk Park & Woosung Park & Kenneth E. Goodson & Robert Sinclair & Shanhui Fan & Pieter G. Kik & Mark L. Brongersma, 2018.
"Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting,"
Nature Communications, Nature, vol. 9(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02496-y
DOI: 10.1038/s41467-017-02496-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02496-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.