IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-017-02251-3.html
   My bibliography  Save this article

Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity

Author

Listed:
  • Yuan Zhang

    (Koch Institute for Integrative Cancer Research, MIT
    University of Rhode Island)

  • Na Li

    (Koch Institute for Integrative Cancer Research, MIT)

  • Heikyung Suh

    (Koch Institute for Integrative Cancer Research, MIT)

  • Darrell J. Irvine

    (Koch Institute for Integrative Cancer Research, MIT
    MIT
    MIT
    Ragon Institute of MGH, MIT, and Harvard)

Abstract

Immunostimulatory agents such as agonistic anti-CD137 and interleukin (IL)−2 generate effective anti-tumor immunity but also elicit serious toxicities, hampering their clinical application. Here we show that combination therapy with anti-CD137 and an IL-2-Fc fusion achieves significant initial anti-tumor activity, but also lethal immunotoxicity deriving from stimulation of circulating leukocytes. To overcome this toxicity, we demonstrate that anchoring IL-2 and anti-CD137 on the surface of liposomes allows these immune agonists to rapidly accumulate in tumors while lowering systemic exposure. In multiple tumor models, immunoliposome delivery achieves anti-tumor activity equivalent to free IL-2/anti-CD137 but with the complete absence of systemic toxicity. Immunoliposomes stimulated tumor infiltration by cytotoxic lymphocytes, cytokine production, and granzyme expression, demonstrating equivalent immunostimulatory effects to the free drugs in the local tumor microenvironment. Thus, surface-anchored particle delivery may provide a general approach to exploit the potent stimulatory activity of immune agonists without debilitating systemic toxicities.

Suggested Citation

  • Yuan Zhang & Na Li & Heikyung Suh & Darrell J. Irvine, 2018. "Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity," Nature Communications, Nature, vol. 9(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02251-3
    DOI: 10.1038/s41467-017-02251-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02251-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02251-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiyuan Wang & Xuanbo Zhang & Hao Ye & Xia Wang & Zhijin Fan & Qi Lu & Songhao Li & Jian Zhao & Shunzhe Zheng & Zhonggui He & Qianqian Ni & Xiaoyuan Chen & Jin Sun, 2023. "Biomimetic nanovaccine-mediated multivalent IL-15 self-transpresentation (MIST) for potent and safe cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-017-02251-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.