Author
Listed:
- Manabendra N. Bera
(The Barcelona Institute of Science and Technology
Max-Planck-Institut für Quantenoptik)
- Arnau Riera
(The Barcelona Institute of Science and Technology
Max-Planck-Institut für Quantenoptik)
- Maciej Lewenstein
(The Barcelona Institute of Science and Technology
ICREA – Institució Catalana de Recerca i Estudis Avançats)
- Andreas Winter
(ICREA – Institució Catalana de Recerca i Estudis Avançats
Universitat Autònoma de Barcelona)
Abstract
The laws of thermodynamics, despite their wide range of applicability, are known to break down when systems are correlated with their environments. Here we generalize thermodynamics to physical scenarios which allow presence of correlations, including those where strong correlations are present. We exploit the connection between information and physics, and introduce a consistent redefinition of heat dissipation by systematically accounting for the information flow from system to bath in terms of the conditional entropy. As a consequence, the formula for the Helmholtz free energy is accordingly modified. Such a remedy not only fixes the apparent violations of Landauer’s erasure principle and the second law due to anomalous heat flows, but also leads to a generally valid reformulation of the laws of thermodynamics. In this information-theoretic approach, correlations between system and environment store work potential. Thus, in this view, the apparent anomalous heat flows are the refrigeration processes driven by such potentials.
Suggested Citation
Manabendra N. Bera & Arnau Riera & Maciej Lewenstein & Andreas Winter, 2017.
"Generalized laws of thermodynamics in the presence of correlations,"
Nature Communications, Nature, vol. 8(1), pages 1-6, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02370-x
DOI: 10.1038/s41467-017-02370-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02370-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.