IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-02316-3.html
   My bibliography  Save this article

Forming quasicrystals by monodisperse soft core particles

Author

Listed:
  • Mengjie Zu

    (University of Science and Technology of China)

  • Peng Tan

    (Fudan University)

  • Ning Xu

    (University of Science and Technology of China)

Abstract

In traditional approaches to form quasicrystals, multiple competing length scales involved in particle size, shape, or interaction potential are believed to be necessary. It is unexpected that quasicrystals can be formed by monodisperse, isotropic particles interacting via a simple potential that does not contain explicit multiple length scales to stabilize quasicrystals. Here, we report the surprising finding of the formation of such quasicrystals in high-density systems of soft-core particles. Although there are length scales naturally introduced in our model systems, they do not establish the quasicrystalline order. In two dimensions, we find not only dodecagonal but also octagonal quasicrystals, which have not been found yet in soft quasicrystals. In such unexpected quasicrystals, particles tend to form pentagons, which are essential elements to develop the quasicrystalline order. Our findings thus pave an unexpected and simple way to form quasicrystals and pose a challenge for theoretical understanding of quasicrystals.

Suggested Citation

  • Mengjie Zu & Peng Tan & Ning Xu, 2017. "Forming quasicrystals by monodisperse soft core particles," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02316-3
    DOI: 10.1038/s41467-017-02316-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02316-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02316-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nogueira, T.P.O. & Bordin, José Rafael, 2022. "Patterns in 2D core-softened systems: From sphere to dumbbell colloids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02316-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.