IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-02298-2.html
   My bibliography  Save this article

Application of optimal band-limited control protocols to quantum noise sensing

Author

Listed:
  • V. M. Frey

    (The University of Sydney
    National Measurement Institute)

  • S. Mavadia

    (The University of Sydney
    National Measurement Institute)

  • L. M. Norris

    (Dartmouth College)

  • W. Ferranti

    (The University of Sydney
    National Measurement Institute)

  • D. Lucarelli

    (Applied Physics Laboratory)

  • L. Viola

    (Dartmouth College)

  • M. J. Biercuk

    (The University of Sydney
    National Measurement Institute)

Abstract

Essential to the functionality of qubit-based sensors are control protocols, which shape their response in frequency space. However, in common control routines out-of-band spectral leakage complicates interpretation of the sensor’s signal. In this work, we leverage discrete prolate spheroidal sequences (a.k.a. Slepian sequences) to synthesize provably optimal narrowband controls ideally suited to spectral estimation of a qubit’s noisy environment. Experiments with trapped ions demonstrate how spectral leakage may be reduced by orders of magnitude over conventional controls when a near resonant driving field is modulated by Slepians, and how the desired narrowband sensitivity may be tuned using concepts from RF engineering. We demonstrate that classical multitaper techniques for spectral analysis can be ported to the quantum domain and combined with Bayesian estimation tools to experimentally reconstruct complex noise spectra. We then deploy these techniques to identify previously immeasurable frequency-resolved amplitude noise in our qubit’s microwave synthesis chain.

Suggested Citation

  • V. M. Frey & S. Mavadia & L. M. Norris & W. Ferranti & D. Lucarelli & L. Viola & M. J. Biercuk, 2017. "Application of optimal band-limited control protocols to quantum noise sensing," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02298-2
    DOI: 10.1038/s41467-017-02298-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02298-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02298-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Xin Wang & Aashish A. Clerk, 2021. "Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    2. Jonas Meinel & Vadim Vorobyov & Ping Wang & Boris Yavkin & Mathias Pfender & Hitoshi Sumiya & Shinobu Onoda & Junichi Isoya & Ren-Bao Liu & J. Wrachtrup, 2022. "Quantum nonlinear spectroscopy of single nuclear spins," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02298-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.