IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01998-z.html
   My bibliography  Save this article

Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter

Author

Listed:
  • Wenjuan Huang

    (Iowa State University)

  • Steven J. Hall

    (Iowa State University)

Abstract

Moisture response functions for soil microbial carbon (C) mineralization remain a critical uncertainty for predicting ecosystem-climate feedbacks. Theory and models posit that C mineralization declines under elevated moisture and associated anaerobic conditions, leading to soil C accumulation. Yet, iron (Fe) reduction potentially releases protected C, providing an under-appreciated mechanism for C destabilization under elevated moisture. Here we incubate Mollisols from ecosystems under C3/C4 plant rotations at moisture levels at and above field capacity over 5 months. Increased moisture and anaerobiosis initially suppress soil C mineralization, consistent with theory. However, after 25 days, elevated moisture stimulates cumulative gaseous C-loss as CO2 and CH4 to >150% of the control. Stable C isotopes show that mineralization of older C3-derived C released following Fe reduction dominates C losses. Counter to theory, elevated moisture may significantly accelerate C losses from mineral soils over weeks to months—a critical mechanistic deficiency of current Earth system models.

Suggested Citation

  • Wenjuan Huang & Steven J. Hall, 2017. "Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01998-z
    DOI: 10.1038/s41467-017-01998-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01998-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01998-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Caixia & Wang, Guangshuai & Han, Qisheng & Sun, Jingsheng & Ning, Huifeng & Feng, Di, 2023. "Soil moisture and water-nitrogen synergy dominate the change of soil carbon stock in farmland," Agricultural Water Management, Elsevier, vol. 287(C).
    2. Zhu, Jie & Chen, Shanghong & Zhang, Qingwen & Mei, Xurong, 2023. "Multi-year vertical and life cycle impacts of C-N management on soil moisture regimes," Agricultural Water Management, Elsevier, vol. 290(C).
    3. Futing Liu & Shuqi Qin & Kai Fang & Leiyi Chen & Yunfeng Peng & Pete Smith & Yuanhe Yang, 2022. "Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Nikolaos V. Paranychianakis & Giorgos Giannakis & Daniel Moraetis & Vasileios A. Tzanakakis & Nikolaos P. Nikolaidis, 2021. "Crop Litter Has a Strong Effect on Soil Organic Matter Sequestration in Semi-Arid Environments," Sustainability, MDPI, vol. 13(23), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01998-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.