IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01897-3.html
   My bibliography  Save this article

Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in Drosophila

Author

Listed:
  • Chang Huang

    (Chinese Academy of Sciences)

  • Fu Yang

    (National institute of Biological Sciences)

  • Zhuqiang Zhang

    (Chinese Academy of Sciences)

  • Jing Zhang

    (Chinese Academy of Sciences)

  • Gaihong Cai

    (National institute of Biological Sciences)

  • Lin Li

    (National institute of Biological Sciences)

  • Yong Zheng

    (Chinese Academy of Sciences)

  • She Chen

    (National institute of Biological Sciences)

  • Rongwen Xi

    (National institute of Biological Sciences)

  • Bing Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Ash1 is a Trithorax group protein that possesses H3K36-specific histone methyltransferase activity, which antagonizes Polycomb silencing. Here we report the identification of two Ash1 complex subunits, Mrg15 and Nurf55. In vitro, Mrg15 stimulates the enzymatic activity of Ash1. In vivo, Mrg15 is recruited by Ash1 to their common targets, and Mrg15 reinforces Ash1 chromatin association and facilitates the proper deposition of H3K36me2. To dissect the functional role of Mrg15 in the context of the Ash1 complex, we identify an Ash1 point mutation (Ash1-R1288A) that displays a greatly attenuated interaction with Mrg15. Knock-in flies bearing this mutation display multiple homeotic transformation phenotypes, and these phenotypes are partially rescued by overexpressing the Mrg15-Nurf55 fusion protein, which stabilizes the association of Mrg15 with Ash1. In summary, Mrg15 is a subunit of the Ash1 complex, a stimulator of Ash1 enzymatic activity and a critical regulator of the TrxG protein function of Ash1 in Drosophila.

Suggested Citation

  • Chang Huang & Fu Yang & Zhuqiang Zhang & Jing Zhang & Gaihong Cai & Lin Li & Yong Zheng & She Chen & Rongwen Xi & Bing Zhu, 2017. "Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in Drosophila," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01897-3
    DOI: 10.1038/s41467-017-01897-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01897-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01897-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corina Maritz & Reihaneh Khaleghi & Michelle N. Yancoskie & Sarah Diethelm & Sonja BrĂ¼lisauer & Natalia Santos Ferreira & Yang Jiang & Shana J. Sturla & Hanspeter Naegeli, 2023. "ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Mengting Xu & Qi Zhang & Huanbin Shi & Zhongling Wu & Wei Zhou & Fucheng Lin & Yanjun Kou & Zeng Tao, 2024. "A repressive H3K36me2 reader mediates Polycomb silencing," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01897-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.