IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01888-4.html
   My bibliography  Save this article

Josephson emission with frequency span 1–11 THz from small Bi2Sr2CaCu2O8+δ mesa structures

Author

Listed:
  • E. A. Borodianskyi

    (Stockholm University, AlbaNova University Center)

  • V. M. Krasnov

    (Stockholm University, AlbaNova University Center)

Abstract

Mesa structures made of Bi2Sr2CaCu2O8+δ high-temperature superconductor represent stacks of atomic scale intrinsic Josephson junctions. They can be used for generation of high-frequency electromagnetic waves. Here we analyze Josephson emission from small-but-high mesas (with a small area, but containing many stacked junctions). We have found strong evidence for tunable terahertz emission with a good efficacy in a record high-frequency span 1–11 THz, approaching the theoretical upper limit for this superconductor. Emission maxima correspond to in-phase cavity modes in the mesas, indicating coherent superradiant nature of the emission. We conclude that terahertz emission requires a threshold number of junctions N ~ 100. The threshold behavior is not present in the classical description of stacked Josephson junctions and suggests importance of laser-like cascade amplification of the photon number in the cavity.

Suggested Citation

  • E. A. Borodianskyi & V. M. Krasnov, 2017. "Josephson emission with frequency span 1–11 THz from small Bi2Sr2CaCu2O8+δ mesa structures," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01888-4
    DOI: 10.1038/s41467-017-01888-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01888-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01888-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taras Golod & Vladimir M. Krasnov, 2022. "Demonstration of a superconducting diode-with-memory, operational at zero magnetic field with switchable nonreciprocity," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Taras Golod & Lise Morlet-Decarnin & Vladimir M. Krasnov, 2023. "Word and bit line operation of a 1 × 1 μm2 superconducting vortex-based memory," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01888-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.