IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01874-w.html
   My bibliography  Save this article

Feature-based learning improves adaptability without compromising precision

Author

Listed:
  • Shiva Farashahi

    (Dartmouth College)

  • Katherine Rowe

    (Dartmouth College)

  • Zohra Aslami

    (Dartmouth College)

  • Daeyeol Lee

    (Yale School of Medicine
    Yale School of Medicine
    Yale School of Medicine
    Yale University)

  • Alireza Soltani

    (Dartmouth College)

Abstract

Learning from reward feedback is essential for survival but can become extremely challenging with myriad choice options. Here, we propose that learning reward values of individual features can provide a heuristic for estimating reward values of choice options in dynamic, multi-dimensional environments. We hypothesize that this feature-based learning occurs not just because it can reduce dimensionality, but more importantly because it can increase adaptability without compromising precision of learning. We experimentally test this hypothesis and find that in dynamic environments, human subjects adopt feature-based learning even when this approach does not reduce dimensionality. Even in static, low-dimensional environments, subjects initially adopt feature-based learning and gradually switch to learning reward values of individual options, depending on how accurately objects’ values can be predicted by combining feature values. Our computational models reproduce these results and highlight the importance of neurons coding feature values for parallel learning of values for features and objects.

Suggested Citation

  • Shiva Farashahi & Katherine Rowe & Zohra Aslami & Daeyeol Lee & Alireza Soltani, 2017. "Feature-based learning improves adaptability without compromising precision," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01874-w
    DOI: 10.1038/s41467-017-01874-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01874-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01874-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R Becket Ebitz & Brianna J Sleezer & Hank P Jedema & Charles W Bradberry & Benjamin Y Hayden, 2019. "Tonic exploration governs both flexibility and lapses," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-37, November.
    2. Shiva Farashahi & Alireza Soltani, 2021. "Computational mechanisms of distributed value representations and mixed learning strategies," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Amir Dezfouli & Bernard W Balleine, 2019. "Learning the structure of the world: The adaptive nature of state-space and action representations in multi-stage decision-making," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-22, September.
    4. Nicholas Menghi & Kemal Kacar & Will Penny, 2021. "Multitask learning over shared subspaces," PLOS Computational Biology, Public Library of Science, vol. 17(7), pages 1-25, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01874-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.