IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01811-x.html
   My bibliography  Save this article

Structurally triggered metal-insulator transition in rare-earth nickelates

Author

Listed:
  • Alain Mercy

    (University of Liège)

  • Jordan Bieder

    (University of Liège
    CEA DAM-DIF)

  • Jorge Íñiguez

    (Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux)

  • Philippe Ghosez

    (University of Liège)

Abstract

Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO3, they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition, and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural, and magnetic properties. Here we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen-breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the metal-insulator transition evolution in terms of the rare-earth cations and rationalizing how to tune this transition by acting on oxygen rotation motions.

Suggested Citation

  • Alain Mercy & Jordan Bieder & Jorge Íñiguez & Philippe Ghosez, 2017. "Structurally triggered metal-insulator transition in rare-earth nickelates," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01811-x
    DOI: 10.1038/s41467-017-01811-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01811-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01811-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Shi & Jing Zhang & Bowen Yu & Jie Zheng & Mengqin Wang & Zhe Li & Jingying Zheng & Banggui Liu & Yunzhong Chen & Fengxia Hu & Baogen Shen & Yuansha Chen & Jirong Sun, 2024. "Improved conduction and orbital polarization in ultrathin LaNiO3 sublayer by modulating octahedron rotation in LaNiO3/CaTiO3 superlattices," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01811-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.