Author
Listed:
- Vladimir V. Korolkov
(University of Nottingham)
- Ivan G. Timokhin
(CristalTech Sàrl)
- Rolf Haubrichs
(CristalTech Sàrl)
- Emily F. Smith
(University of Nottingham)
- Lixu Yang
(University of Nottingham)
- Sihai Yang
(The University of Manchester)
- Neil R. Champness
(University of Nottingham)
- Martin Schröder
(The University of Manchester)
- Peter H. Beton
(University of Nottingham)
Abstract
The limited stability of the surface of black phosphorus (BP) under atmospheric conditions is a significant constraint on the exploitation of this layered material and its few layer analogue, phosphorene, as an optoelectronic material. Here we show that supramolecular networks stabilised by hydrogen bonding can be formed on BP, and that these monolayer-thick films can passivate the BP surface and inhibit oxidation under ambient conditions. The supramolecular layers are formed by solution deposition and we use atomic force microscopy to obtain images of the BP surface and hexagonal supramolecular networks of trimesic acid and melamine cyanurate (CA.M) under ambient conditions. The CA.M network is aligned with rows of phosphorus atoms and forms large domains which passivate the BP surface for more than a month, and also provides a stable supramolecular platform for the sequential deposition of 1,2,4,5-tetrakis(4-carboxyphenyl)benzene to form supramolecular heterostructures.
Suggested Citation
Vladimir V. Korolkov & Ivan G. Timokhin & Rolf Haubrichs & Emily F. Smith & Lixu Yang & Sihai Yang & Neil R. Champness & Martin Schröder & Peter H. Beton, 2017.
"Supramolecular networks stabilise and functionalise black phosphorus,"
Nature Communications, Nature, vol. 8(1), pages 1-8, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01797-6
DOI: 10.1038/s41467-017-01797-6
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01797-6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.