IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01786-9.html
   My bibliography  Save this article

Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome

Author

Listed:
  • Lisa Fromm

    (Biochemie-Zentrum der Universität Heidelberg)

  • Sebastian Falk

    (Max Planck Institute of Biochemistry)

  • Dirk Flemming

    (Biochemie-Zentrum der Universität Heidelberg)

  • Jan Michael Schuller

    (Max Planck Institute of Biochemistry)

  • Matthias Thoms

    (Biochemie-Zentrum der Universität Heidelberg)

  • Elena Conti

    (Max Planck Institute of Biochemistry)

  • Ed Hurt

    (Biochemie-Zentrum der Universität Heidelberg)

Abstract

Removal of internal transcribed spacer 2 (ITS2) from pre-ribosomal RNA is essential to make functional ribosomes. This complicated processing reaction begins with a single endonucleolytic cleavage followed by exonucleolytic trimming at both new cleavage sites to generate mature 5.8S and 25S rRNA. We reconstituted the 7S→5.8S processing branch within ITS2 using purified exosome and its nuclear cofactors. We find that both Rrp44’s ribonuclease activities are required for initial RNA shortening followed by hand over to the exonuclease Rrp6. During the in vitro reaction, ITS2-associated factors dissociate and the underlying ‘foot’ structure of the pre-60S particle is dismantled. 7S pre-rRNA processing is independent of 5S RNP rotation, but 26S→25S trimming is a precondition for subsequent 7S→5.8S processing. To complete the in vitro assay, we reconstituted the entire cycle of ITS2 removal with a total of 18 purified factors, catalysed by the integrated activities of the two participating RNA-processing machines, the Las1 complex and nuclear exosome.

Suggested Citation

  • Lisa Fromm & Sebastian Falk & Dirk Flemming & Jan Michael Schuller & Matthias Thoms & Elena Conti & Ed Hurt, 2017. "Reconstitution of the complete pathway of ITS2 processing at the pre-ribosome," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01786-9
    DOI: 10.1038/s41467-017-01786-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01786-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01786-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Judith Dönig & Hannah Mende & Jimena Davila Gallesio & Kristina Wagner & Paul Hotz & Kathrin Schunck & Tanja Piller & Soraya Hölper & Sara Uhan & Manuel Kaulich & Matthias Wirth & Ulrich Keller & Geor, 2023. "Characterization of nucleolar SUMO isopeptidases unveils a general p53-independent checkpoint of impaired ribosome biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01786-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.