IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01763-2.html
   My bibliography  Save this article

Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition

Author

Listed:
  • E. A. Solomon

    (University of Pennsylvania)

  • J. E. Kragel

    (University of Pennsylvania)

  • M. R. Sperling

    (Thomas Jefferson University Hospital)

  • A. Sharan

    (Thomas Jefferson University Hospital)

  • G. Worrell

    (Mayo Clinic)

  • M. Kucewicz

    (Mayo Clinic)

  • C. S. Inman

    (Emory School of Medicine)

  • B. Lega

    (University of Texas Southwestern)

  • K. A. Davis

    (Hospital of the University of Pennsylvania)

  • J. M. Stein

    (Hospital of the University of Pennsylvania)

  • B. C. Jobst

    (Dartmouth Medical Center)

  • K. A. Zaghloul

    (National Institutes of Health)

  • S. A. Sheth

    (Columbia University Medical Center)

  • D. S. Rizzuto

    (University of Pennsylvania)

  • M. J. Kahana

    (University of Pennsylvania)

Abstract

The idea that synchronous neural activity underlies cognition has driven an extensive body of research in human and animal neuroscience. Yet, insufficient data on intracranial electrical connectivity has precluded a direct test of this hypothesis in a whole-brain setting. Through the lens of memory encoding and retrieval processes, we construct whole-brain connectivity maps of fast gamma (30–100 Hz) and slow theta (3–8 Hz) spectral neural activity, based on data from 294 neurosurgical patients fitted with indwelling electrodes. Here we report that gamma networks desynchronize and theta networks synchronize during encoding and retrieval. Furthermore, for nearly all brain regions we studied, gamma power rises as that region desynchronizes with gamma activity elsewhere in the brain, establishing gamma as a largely asynchronous phenomenon. The abundant phenomenon of theta synchrony is positively correlated with a brain region’s gamma power, suggesting a predominant low-frequency mechanism for inter-regional communication.

Suggested Citation

  • E. A. Solomon & J. E. Kragel & M. R. Sperling & A. Sharan & G. Worrell & M. Kucewicz & C. S. Inman & B. Lega & K. A. Davis & J. M. Stein & B. C. Jobst & K. A. Zaghloul & S. A. Sheth & D. S. Rizzuto & , 2017. "Widespread theta synchrony and high-frequency desynchronization underlies enhanced cognition," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01763-2
    DOI: 10.1038/s41467-017-01763-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01763-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01763-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Collomb-Clerc & Maëlle C. M. Gueguen & Lorella Minotti & Philippe Kahane & Vincent Navarro & Fabrice Bartolomei & Romain Carron & Jean Regis & Stephan Chabardès & Stefano Palminteri & Julien B, 2023. "Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Elizabeth L. Johnson & Jack J. Lin & David King-Stephens & Peter B. Weber & Kenneth D. Laxer & Ignacio Saez & Fady Girgis & Mark D’Esposito & Robert T. Knight & David Badre, 2023. "A rapid theta network mechanism for flexible information encoding," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Marie-Christin Fellner & Stephanie Gollwitzer & Stefan Rampp & Gernot Kreiselmeyr & Daniel Bush & Beate Diehl & Nikolai Axmacher & Hajo Hamer & Simon Hanslmayr, 2019. "Spectral fingerprints or spectral tilt? Evidence for distinct oscillatory signatures of memory formation," PLOS Biology, Public Library of Science, vol. 17(7), pages 1-30, July.
    4. Zsuzsanna Kocsis & Rick L. Jenison & Peter N. Taylor & Ryan M. Calmus & Bob McMurray & Ariane E. Rhone & McCall E. Sarrett & Carolina Deifelt Streese & Yukiko Kikuchi & Phillip E. Gander & Joel I. Ber, 2023. "Immediate neural impact and incomplete compensation after semantic hub disconnection," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Yuxuan Li & Jesse K. Pazdera & Michael J. Kahana, 2024. "EEG decoders track memory dynamics," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Tamara Gedankien & Ryan Joseph Tan & Salman Ehtesham Qasim & Haley Moore & David McDonagh & Joshua Jacobs & Bradley Lega, 2023. "Acetylcholine modulates the temporal dynamics of human theta oscillations during memory," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01763-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.