IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01634-w.html
   My bibliography  Save this article

Observation of the exceptional point in cavity magnon-polaritons

Author

Listed:
  • Dengke Zhang

    (Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center
    University of Cambridge)

  • Xiao-Qing Luo

    (Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center)

  • Yi-Pu Wang

    (Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center)

  • Tie-Fu Li

    (Tsinghua University)

  • J. Q. You

    (Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center)

Abstract

Magnon–polaritons are hybrid light–matter quasiparticles originating from the strong coupling between magnons and photons. They have emerged as a potential candidate for implementing quantum transducers and memories. Owing to the dampings of both photons and magnons, the polaritons have limited lifetimes. However, stationary magnon–polariton states can be reached by a dynamical balance between pumping and losses, so the intrinsically nonequilibrium system may be described by a non-Hermitian Hamiltonian. Here we design a tunable cavity quantum electrodynamics system with a small ferromagnetic sphere in a microwave cavity and engineer the dissipations of photons and magnons to create cavity magnon–polaritons which have non-Hermitian spectral degeneracies. By tuning the magnon–photon coupling strength, we observe the polaritonic coherent perfect absorption and demonstrate the phase transition at the exceptional point. Our experiment offers a novel macroscopic quantum platform to explore the non-Hermitian physics of the cavity magnon–polaritons.

Suggested Citation

  • Dengke Zhang & Xiao-Qing Luo & Yi-Pu Wang & Tie-Fu Li & J. Q. You, 2017. "Observation of the exceptional point in cavity magnon-polaritons," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01634-w
    DOI: 10.1038/s41467-017-01634-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01634-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01634-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Wittrock & Salvatore Perna & Romain Lebrun & Katia Ho & Roberta Dutra & Ricardo Ferreira & Paolo Bortolotti & Claudio Serpico & Vincent Cros, 2024. "Non-hermiticity in spintronics: oscillation death in coupled spintronic nano-oscillators through emerging exceptional points," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01634-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.