IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01620-2.html
   My bibliography  Save this article

Nanoscale design of polarization in ultrathin ferroelectric heterostructures

Author

Listed:
  • Gabriele De Luca

    (ETH Zurich)

  • Nives Strkalj

    (ETH Zurich)

  • Sebastian Manz

    (ETH Zurich)

  • Corinne Bouillet

    (Institut de Physique et Chimie des Matériaux de Strasbourg—CNRS UMR 7504)

  • Manfred Fiebig

    (ETH Zurich)

  • Morgan Trassin

    (ETH Zurich)

Abstract

The success of oxide electronics depends on the ability to design functional properties such as ferroelectricity with atomic accuracy. However, despite tremendous advances in ferroelectric heterostructures, the development towards multilevel architectures with precise layer-by-layer command over the polarization is impeded by the lack of continuous control over the balance of electrostatics, strain, chemistry and film thickness during growth. Moreover, the polarization in the deeper layers becomes inaccessible when these are buried by the ongoing deposition. Taking ferroelectric BaTiO3 and multiferroic BiFeO3 as model systems, we observe and engineer the emergence, orientation and interaction of ferroelectric polarization in ultrathin heterostructures with monolayer accuracy. We achieve this by optical second harmonic generation which tracks the evolution of spontaneous polarization in real time throughout the deposition process. Such direct and in situ access to the polarization during growth leads us to heterostructures with user-defined polarization sequences—towards a new class of functional ferroic materials.

Suggested Citation

  • Gabriele De Luca & Nives Strkalj & Sebastian Manz & Corinne Bouillet & Manfred Fiebig & Morgan Trassin, 2017. "Nanoscale design of polarization in ultrathin ferroelectric heterostructures," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01620-2
    DOI: 10.1038/s41467-017-01620-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01620-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01620-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Sikora & Marcin Niemiec & Anna Szeląg-Sikora & Zofia Gródek-Szostak & Maciej Kuboń & Monika Komorowska, 2020. "The Impact of a Controlled-Release Fertilizer on Greenhouse Gas Emissions and the Efficiency of the Production of Chinese Cabbage," Energies, MDPI, vol. 13(8), pages 1-14, April.
    2. Martin F. Sarott & Marta D. Rossell & Manfred Fiebig & Morgan Trassin, 2022. "Multilevel polarization switching in ferroelectric thin films," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01620-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.