IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01496-2.html
   My bibliography  Save this article

Structural insights into DNA cleavage activation of CRISPR-Cas9 system

Author

Listed:
  • Cong Huai

    (School of Life Sciences, Fudan University)

  • Gan Li

    (School of Life Sciences, Fudan University)

  • Ruijie Yao

    (School of Life Sciences, Fudan University)

  • Yingyi Zhang

    (Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Mi Cao

    (Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Liangliang Kong

    (Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Chenqiang Jia

    (School of Life Sciences, Fudan University)

  • Hui Yuan

    (School of Life Sciences, Fudan University)

  • Hongyan Chen

    (School of Life Sciences, Fudan University)

  • Daru Lu

    (School of Life Sciences, Fudan University)

  • Qiang Huang

    (School of Life Sciences, Fudan University)

Abstract

CRISPR-Cas9 technology has been widely used for genome engineering. Its RNA-guided endonuclease Cas9 binds specifically to target DNA and then cleaves the two DNA strands with HNH and RuvC nuclease domains. However, structural information regarding the DNA cleavage-activating state of two nuclease domains remains sparse. Here, we report a 5.2 Å cryo-EM structure of Cas9 in complex with sgRNA and target DNA. This structure reveals a conformational state of Cas9 in which the HNH domain is closest to the DNA cleavage site. Compared with two known HNH states, our structure shows that the HNH active site moves toward the cleavage site by about 25 and 13 Å, respectively. In combination with EM-based molecular dynamics simulations, we show that residues of the nuclease domains in our structure could form cleavage-compatible conformations with the target DNA. Together, these results strongly suggest that our cryo-EM structure resembles a DNA cleavage-activating architecture of Cas9.

Suggested Citation

  • Cong Huai & Gan Li & Ruijie Yao & Yingyi Zhang & Mi Cao & Liangliang Kong & Chenqiang Jia & Hui Yuan & Hongyan Chen & Daru Lu & Qiang Huang, 2017. "Structural insights into DNA cleavage activation of CRISPR-Cas9 system," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01496-2
    DOI: 10.1038/s41467-017-01496-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01496-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01496-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinchang Chen & Guohui Chuai & Haihang Zhang & Jin Tang & Liwen Duan & Huan Guan & Wenhui Li & Wannian Li & Jiaying Wen & Erwei Zuo & Qing Zhang & Qi Liu, 2023. "Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01496-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.