IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01466-8.html
   My bibliography  Save this article

Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy

Author

Listed:
  • Mikihiro Shibata

    (Kanazawa University
    Kanazawa University)

  • Hiroshi Nishimasu

    (The University of Tokyo
    JST, PRESTO)

  • Noriyuki Kodera

    (Kanazawa University
    JST, PRESTO)

  • Seiichi Hirano

    (The University of Tokyo)

  • Toshio Ando

    (Kanazawa University
    CREST/JST)

  • Takayuki Uchihashi

    (Kanazawa University
    CREST/JST
    Kanazawa University
    Department of Physics, Nagoya University)

  • Osamu Nureki

    (The University of Tokyo)

Abstract

The CRISPR-associated endonuclease Cas9 binds to a guide RNA and cleaves double-stranded DNA with a sequence complementary to the RNA guide. The Cas9–RNA system has been harnessed for numerous applications, such as genome editing. Here we use high-speed atomic force microscopy (HS-AFM) to visualize the real-space and real-time dynamics of CRISPR-Cas9 in action. HS-AFM movies indicate that, whereas apo-Cas9 adopts unexpected flexible conformations, Cas9–RNA forms a stable bilobed structure and interrogates target sites on the DNA by three-dimensional diffusion. These movies also provide real-time visualization of the Cas9-mediated DNA cleavage process. Notably, the Cas9 HNH nuclease domain fluctuates upon DNA binding, and subsequently adopts an active conformation, where the HNH active site is docked at the cleavage site in the target DNA. Collectively, our HS-AFM data extend our understanding of the action mechanism of CRISPR-Cas9.

Suggested Citation

  • Mikihiro Shibata & Hiroshi Nishimasu & Noriyuki Kodera & Seiichi Hirano & Toshio Ando & Takayuki Uchihashi & Osamu Nureki, 2017. "Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01466-8
    DOI: 10.1038/s41467-017-01466-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01466-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01466-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuki Kato & Sae Okazaki & Soumya Kannan & Han Altae-Tran & F. Esra Demircioglu & Yukari Isayama & Junichiro Ishikawa & Masahiro Fukuda & Rhiannon K. Macrae & Tomohiro Nishizawa & Kira S. Makarova & , 2022. "Structure of the IscB–ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Aldo S. Bader & Martin Bushell, 2023. "iMUT-seq: high-resolution DSB-induced mutation profiling reveals prevalent homologous-recombination dependent mutagenesis," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01466-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.