IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01428-0.html
   My bibliography  Save this article

Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines

Author

Listed:
  • Kishore Natte

    (Leibniz-Institute for Catalysis at the University of Rostock)

  • Helfried Neumann

    (Leibniz-Institute for Catalysis at the University of Rostock)

  • Rajenahally V. Jagadeesh

    (Leibniz-Institute for Catalysis at the University of Rostock)

  • Matthias Beller

    (Leibniz-Institute for Catalysis at the University of Rostock)

Abstract

N-Methylated amines play an important role in regulating the biological and pharmaceutical properties of all kinds of life science molecules. In general, this class of compounds is synthesized via reductive amination reactions using high pressure of molecular hydrogen. Thus, on laboratory scale especially in drug discovery, activated (toxic) methyl compounds such as methyl iodide and dimethyl sulfate are still employed, which also generate significant amounts of waste. Therefore, the development of more convenient and operationally simple processes for the synthesis of advanced N-methylamines is highly desired. Herein, we report the synthesis of functionalized and structurally diverse N-methylamines directly from nitroarenes and paraformaldehyde, in which the latter acts as both methylation and reducing agent in the presence of reusable iron oxide catalyst. The general applicability of this protocol is demonstrated by the synthesis of >50 important N-methylamines including highly selective reductive N-methylations of life science molecules and actual drugs, namely hordenine, venlafaxine, imipramine and amitriptyline.

Suggested Citation

  • Kishore Natte & Helfried Neumann & Rajenahally V. Jagadeesh & Matthias Beller, 2017. "Convenient iron-catalyzed reductive aminations without hydrogen for selective synthesis of N-methylamines," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01428-0
    DOI: 10.1038/s41467-017-01428-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01428-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01428-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Gao & Rui Ma & Fairoosa Poovan & Lan Zhang & Hanan Atia & Narayana V. Kalevaru & Wenjing Sun & Sebastian Wohlrab & Denis A. Chusov & Ning Wang & Rajenahally V. Jagadeesh & Matthias Beller, 2023. "Streamlining the synthesis of amides using Nickel-based nanocatalysts," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01428-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.