IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01408-4.html
   My bibliography  Save this article

A thermostable Cas9 with increased lifetime in human plasma

Author

Listed:
  • Lucas B. Harrington

    (University of California)

  • David Paez-Espino

    (Joint Genome Institute)

  • Brett T. Staahl

    (University of California)

  • Janice S. Chen

    (University of California)

  • Enbo Ma

    (University of California)

  • Nikos C. Kyrpides

    (Joint Genome Institute)

  • Jennifer A. Doudna

    (University of California
    University of California
    University of California
    University of California)

Abstract

CRISPR-Cas9 is a powerful technology that has enabled genome editing in a wide range of species. However, the currently developed Cas9 homologs all originate from mesophilic bacteria, making them susceptible to degradation and unsuitable for applications requiring cleavage at elevated temperatures. Here, we show that the Cas9 protein from the thermophilic bacterium Geobacillus stearothermophilus (GeoCas9) catalyzes RNA-guided DNA cleavage at elevated temperatures. GeoCas9 is active at temperatures up to 70 °C, compared to 45 °C for Streptococcus pyogenes Cas9 (SpyCas9), which expands the temperature range for CRISPR-Cas9 applications. We also found that GeoCas9 is an effective tool for editing mammalian genomes when delivered as a ribonucleoprotein (RNP) complex. Together with an increased lifetime in human plasma, the thermostable GeoCas9 provides the foundation for improved RNP delivery in vivo and expands the temperature range of CRISPR-Cas9.

Suggested Citation

  • Lucas B. Harrington & David Paez-Espino & Brett T. Staahl & Janice S. Chen & Enbo Ma & Nikos C. Kyrpides & Jennifer A. Doudna, 2017. "A thermostable Cas9 with increased lifetime in human plasma," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01408-4
    DOI: 10.1038/s41467-017-01408-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01408-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01408-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiheng Yang & Zilong Li & Bixiao Li & Ruihong Bu & Gao-Yi Tan & Zhengduo Wang & Hao Yan & Zhenguo Xin & Guojian Zhang & Ming Li & Hua Xiang & Lixin Zhang & Weishan Wang, 2023. "A thermostable type I-B CRISPR-Cas system for orthogonal and multiplexed genetic engineering," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Marcus A. Toral & Carsten T. Charlesworth & Benjamin Ng & Teja Chemudupati & Shota Homma & Hiromitsu Nakauchi & Alexander G. Bassuk & Matthew H. Porteus & Vinit B. Mahajan, 2022. "Investigation of Cas9 antibodies in the human eye," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01408-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.