IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01287-9.html
   My bibliography  Save this article

Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses

Author

Listed:
  • Radu Tusco

    (University of Warwick)

  • Anne-Claire Jacomin

    (University of Warwick)

  • Ashish Jain

    (University of Tromsø – The Arctic University of Norway
    Oslo University Hospital
    University of Oslo)

  • Bridget S. Penman

    (University of Warwick)

  • Kenneth Bowitz Larsen

    (University of Tromsø – The Arctic University of Norway)

  • Terje Johansen

    (University of Tromsø – The Arctic University of Norway)

  • Ioannis P. Nezis

    (University of Warwick)

Abstract

Selective autophagy is a catabolic process with which cellular material is specifically targeted for degradation by lysosomes. The function of selective autophagic degradation of self-components in the regulation of innate immunity is still unclear. Here we show that Drosophila Kenny, the homolog of mammalian IKKγ, is a selective autophagy receptor that mediates the degradation of the IκB kinase complex. Selective autophagic degradation of the IκB kinase complex prevents constitutive activation of the immune deficiency pathway in response to commensal microbiota. We show that autophagy-deficient flies have a systemic innate immune response that promotes a hyperplasia phenotype in the midgut. Remarkably, human IKKγ does not interact with mammalian Atg8-family proteins. Using a mathematical model, we suggest mechanisms by which pathogen selection might have driven the loss of LIR motif functionality during evolution. Our results suggest that there may have been an autophagy-related switch during the evolution of the IKKγ proteins in metazoans.

Suggested Citation

  • Radu Tusco & Anne-Claire Jacomin & Ashish Jain & Bridget S. Penman & Kenneth Bowitz Larsen & Terje Johansen & Ioannis P. Nezis, 2017. "Kenny mediates selective autophagic degradation of the IKK complex to control innate immune responses," Nature Communications, Nature, vol. 8(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01287-9
    DOI: 10.1038/s41467-017-01287-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01287-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01287-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolas Furthmann & Verian Bader & Lena Angersbach & Alina Blusch & Simran Goel & Ana Sánchez-Vicente & Laura J. Krause & Sarah A. Chaban & Prerna Grover & Victoria A. Trinkaus & Eva M. Well & Maximil, 2023. "NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    2. Yinan Yang & Huijing Zhou & Xiawei Huang & Chengfang Wu & Kewei Zheng & Jingrong Deng & Yonggang Zheng & Jiahui Wang & Xiaofeng Chi & Xianjue Ma & Huimin Pan & Rui Shen & Duojia Pan & Bo Liu, 2024. "Innate immune and proinflammatory signals activate the Hippo pathway via a Tak1-STRIPAK-Tao axis," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01287-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.