IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01246-4.html
   My bibliography  Save this article

Folding of a bacterial integral outer membrane protein is initiated in the periplasm

Author

Listed:
  • Rakesh Sikdar

    (National Institutes of Health)

  • Janine H. Peterson

    (National Institutes of Health)

  • D. Eric Anderson

    (National Institutes of Health)

  • Harris D. Bernstein

    (National Institutes of Health)

Abstract

The Bam complex promotes the insertion of β-barrel proteins into the bacterial outer membrane, but it is unclear whether it threads β-strands into the lipid bilayer in a stepwise fashion or catalyzes the insertion of pre-folded substrates. Here, to distinguish between these two possibilities, we analyze the biogenesis of UpaG, a trimeric autotransporter adhesin (TAA). TAAs consist of three identical subunits that together form a single β-barrel domain and an extracellular coiled-coil (“passenger”) domain. Using site-specific photocrosslinking to obtain spatial and temporal insights into UpaG assembly, we show that UpaG β-barrel segments fold into a trimeric structure in the periplasm that persists until the termination of passenger-domain translocation. In addition to obtaining evidence that at least some β-barrel proteins begin to fold before they interact with the Bam complex, we identify several discrete steps in the assembly of a poorly characterized class of virulence factors.

Suggested Citation

  • Rakesh Sikdar & Janine H. Peterson & D. Eric Anderson & Harris D. Bernstein, 2017. "Folding of a bacterial integral outer membrane protein is initiated in the periplasm," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01246-4
    DOI: 10.1038/s41467-017-01246-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01246-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01246-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu Wang & Sarah B. Nyenhuis & Harris D. Bernstein, 2024. "The translocation assembly module (TAM) catalyzes the assembly of bacterial outer membrane proteins in vitro," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01246-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.