IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01227-7.html
   My bibliography  Save this article

Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars

Author

Listed:
  • Paul B. Niles

    (NASA Johnson Space Center)

  • Joseph Michalski

    (University of Hong Kong)

  • Douglas W. Ming

    (NASA Johnson Space Center)

  • D. C. Golden

    (ESCG)

Abstract

Large Hesperian-aged (~3.7 Ga) layered deposits of sulfate-rich sediments in the equatorial regions of Mars have been suggested to be evidence for ephemeral playa environments. But early Mars may not have been warm enough to support conditions similar to what occurs in arid environments on Earth. Instead cold, icy environments may have been widespread. Under cryogenic conditions sulfate formation might be blocked, since kinetics of silicate weathering are typically strongly retarded at temperatures well below 0 °C. But cryo-concentration of acidic solutions may counteract the slow kinetics. Here we show that cryo-concentrated acidic brines rapidly chemically weather olivine minerals and form sulfate minerals at temperatures as low as −60 °C. These experimental results demonstrate the viability of sulfate formation under current Martian conditions, even in the polar regions. An ice-hosted sedimentation and weathering model may provide a compelling description of the origin of large Hesperian-aged layered sulfate deposits on Mars.

Suggested Citation

  • Paul B. Niles & Joseph Michalski & Douglas W. Ming & D. C. Golden, 2017. "Elevated olivine weathering rates and sulfate formation at cryogenic temperatures on Mars," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01227-7
    DOI: 10.1038/s41467-017-01227-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01227-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01227-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiacheng Liu & Joseph R. Michalski & Zhicheng Wang & Wen-Sheng Gao, 2024. "Atmospheric oxidation drove climate change on Noachian Mars," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01227-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.