IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01149-4.html
   My bibliography  Save this article

Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice

Author

Listed:
  • Chunlei Wan

    (Tsinghua University)

  • Ruoming Tian

    (Toyota Physical and Chemical Research Institute)

  • Mami Kondou

    (Nagoya University)

  • Ronggui Yang

    (University of Colorado
    University of Colorado
    National Renewable Energy Laboratory)

  • Pengan Zong

    (Tsinghua University)

  • Kunihito Koumoto

    (Toyota Physical and Chemical Research Institute)

Abstract

Hybrid inorganic–organic superlattice with an electron-transmitting but phonon-blocking structure has emerged as a promising flexible thin film thermoelectric material. However, the substantial challenge in optimizing carrier concentration without disrupting the superlattice structure prevents further improvement of the thermoelectric performance. Here we demonstrate a strategy for carrier optimization in a hybrid inorganic–organic superlattice of TiS2[tetrabutylammonium] x [hexylammonium] y , where the organic layers are composed of a random mixture of tetrabutylammonium and hexylammonium molecules. By vacuum heating the hybrid materials at an intermediate temperature, the hexylammonium molecules with a lower boiling point are selectively de-intercalated, which reduces the electron density due to the requirement of electroneutrality. The tetrabutylammonium molecules with a higher boiling point remain to support and stabilize the superlattice structure. The carrier concentration can thus be effectively reduced, resulting in a remarkably high power factor of 904 µW m−1 K−2 at 300 K for flexible thermoelectrics, approaching the values achieved in conventional inorganic semiconductors.

Suggested Citation

  • Chunlei Wan & Ruoming Tian & Mami Kondou & Ronggui Yang & Pengan Zong & Kunihito Koumoto, 2017. "Ultrahigh thermoelectric power factor in flexible hybrid inorganic-organic superlattice," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01149-4
    DOI: 10.1038/s41467-017-01149-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01149-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01149-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    2. Yu Pan & Bin He & Toni Helm & Dong Chen & Walter Schnelle & Claudia Felser, 2022. "Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Tian, Yu & Ren, Guang-Kun & Wei, Zhijie & Zheng, Zhe & Deng, Shunjie & Ma, Li & Li, Yuansen & Zhou, Zhifang & Chen, Xiaohong & Shi, Yan & Lin, Yuan-Hua, 2024. "Advances of thermoelectric power generation for room temperature: Applications, devices, materials and beyond," Renewable Energy, Elsevier, vol. 226(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01149-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.