Author
Listed:
- Alexander Baer
(University of Kassel)
- Stephan Schmidt
(Heinrich-Heine-Universität Düsseldorf)
- Sebastian Haensch
(Heinrich-Heine-Universität Düsseldorf)
- Michaela Eder
(Max Planck Institute of Colloids and Interfaces, Research Campus Golm)
- Georg Mayer
(University of Kassel)
- Matthew J. Harrington
(Max Planck Institute of Colloids and Interfaces, Research Campus Golm
McGill University)
Abstract
Velvet worms eject a fluid capture slime that can be mechanically drawn into stiff biopolymeric fibres. Remarkably, these fibres can be dissolved by extended exposure to water, and new regenerated fibres can be drawn from the dissolved fibre solution—indicating a fully recyclable process. Here, we perform a multiscale structural and compositional investigation of this reversible fabrication process with the velvet worm Euperipatoides rowelli, revealing that biopolymeric fibre assembly is facilitated via mono-disperse lipid-protein nanoglobules. Shear forces cause nanoglobules to self-assemble into nano- and microfibrils, which can be drawn into macroscopic fibres with a protein-enriched core and lipid-rich coating. Fibre dissolution in water leads to re-formation of nanoglobules, suggesting that this dynamic supramolecular assembly of mechanoresponsive protein-building blocks is mediated by reversible non-covalent interactions. These findings offer important mechanistic insights into the role of mechanochemical processes in bio-fibre formation, providing potential avenues for sustainable material fabrication processes.
Suggested Citation
Alexander Baer & Stephan Schmidt & Sebastian Haensch & Michaela Eder & Georg Mayer & Matthew J. Harrington, 2017.
"Mechanoresponsive lipid-protein nanoglobules facilitate reversible fibre formation in velvet worm slime,"
Nature Communications, Nature, vol. 8(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01142-x
DOI: 10.1038/s41467-017-01142-x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01142-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.