IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01030-4.html
   My bibliography  Save this article

Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state

Author

Listed:
  • Charles B. Beaman

    (McGovern Medical School, University of Texas at Houston)

  • Sarah L. Eagleman

    (McGovern Medical School, University of Texas at Houston
    Rice University, George R. Brown School of Engineering)

  • Valentin Dragoi

    (McGovern Medical School, University of Texas at Houston)

Abstract

Cortical activity changes continuously during the course of the day. At a global scale, population activity varies between the ‘synchronized’ state during sleep and ‘desynchronized’ state during waking. However, whether local fluctuations in population synchrony during wakefulness modulate the accuracy of sensory encoding and behavioral performance is poorly understood. Here, we show that populations of cells in monkey visual cortex exhibit rapid fluctuations in synchrony ranging from desynchronized responses, indicative of high alertness, to highly synchronized responses. These fluctuations are local and control the trial variability in population coding accuracy and behavioral performance in a discrimination task. When local population activity is desynchronized, the correlated variability between neurons is reduced, and network and behavioral performance are enhanced. These findings demonstrate that the structure of variability in local cortical populations is not noise but rather controls how sensory information is optimally integrated with ongoing processes to guide network coding and behavior.

Suggested Citation

  • Charles B. Beaman & Sarah L. Eagleman & Valentin Dragoi, 2017. "Sensory coding accuracy and perceptual performance are improved during the desynchronized cortical state," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01030-4
    DOI: 10.1038/s41467-017-01030-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01030-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01030-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Matthijs N. Oude Lohuis & Jean L. Pie & Pietro Marchesi & Jorrit S. Montijn & Christiaan P. J. Kock & Cyriel M. A. Pennartz & Umberto Olcese, 2022. "Multisensory task demands temporally extend the causal requirement for visual cortex in perception," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01030-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.