IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00987-6.html
   My bibliography  Save this article

Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices

Author

Listed:
  • Marcelo Davanco

    (National Institute of Standards and Technology)

  • Jin Liu

    (National Institute of Standards and Technology
    Sun-Yat Sen University
    University of Maryland)

  • Luca Sapienza

    (National Institute of Standards and Technology
    University of Southampton)

  • Chen-Zhao Zhang

    (South China Normal University, Higher-Education Mega-Center)

  • José Vinícius Miranda Cardoso

    (National Institute of Standards and Technology
    Federal University of Campina Grande)

  • Varun Verma

    (National Institute of Standards and Technology)

  • Richard Mirin

    (National Institute of Standards and Technology)

  • Sae Woo Nam

    (National Institute of Standards and Technology)

  • Liu Liu

    (South China Normal University, Higher-Education Mega-Center)

  • Kartik Srinivasan

    (National Institute of Standards and Technology)

Abstract

Single-quantum emitters are an important resource for photonic quantum technologies, constituting building blocks for single-photon sources, stationary qubits, and deterministic quantum gates. Robust implementation of such functions is achieved through systems that provide both strong light–matter interactions and a low-loss interface between emitters and optical fields. Existing platforms providing such functionality at the single-node level present steep scalability challenges. Here, we develop a heterogeneous photonic integration platform that provides such capabilities in a scalable on-chip implementation, allowing direct integration of GaAs waveguides and cavities containing self-assembled InAs/GaAs quantum dots—a mature class of solid-state quantum emitter—with low-loss Si3N4 waveguides. We demonstrate a highly efficient optical interface between Si3N4 waveguides and single-quantum dots in GaAs geometries, with performance approaching that of devices optimized for each material individually. This includes quantum dot radiative rate enhancement in microcavities, and a path for reaching the non-perturbative strong-coupling regime.

Suggested Citation

  • Marcelo Davanco & Jin Liu & Luca Sapienza & Chen-Zhao Zhang & José Vinícius Miranda Cardoso & Varun Verma & Richard Mirin & Sae Woo Nam & Liu Liu & Kartik Srinivasan, 2017. "Heterogeneous integration for on-chip quantum photonic circuits with single quantum dot devices," Nature Communications, Nature, vol. 8(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00987-6
    DOI: 10.1038/s41467-017-00987-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00987-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00987-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janderson R. Rodrigues & Utsav D. Dave & Aseema Mohanty & Xingchen Ji & Ipshita Datta & Shriddha Chaitanya & Euijae Shim & Ricardo Gutierrez-Jauregui & Vilson R. Almeida & Ana Asenjo-Garcia & Michal L, 2023. "All-dielectric scale invariant waveguide," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Ashish Chanana & Hugo Larocque & Renan Moreira & Jacques Carolan & Biswarup Guha & Emerson G. Melo & Vikas Anant & Jindong Song & Dirk Englund & Daniel J. Blumenthal & Kartik Srinivasan & Marcelo Dava, 2022. "Ultra-low loss quantum photonic circuits integrated with single quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Dominik D. Bühler & Matthias Weiß & Antonio Crespo-Poveda & Emeline D. S. Nysten & Jonathan J. Finley & Kai Müller & Paulo V. Santos & Mauricio M. Lima & Hubert J. Krenner, 2022. "On-chip generation and dynamic piezo-optomechanical rotation of single photons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00987-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.