IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00955-0.html
   My bibliography  Save this article

Planktic foraminifera form their shells via metastable carbonate phases

Author

Listed:
  • D. E. Jacob

    (Macquarie University)

  • R. Wirth

    (Helmholtz-Centre Potsdam, German Research Centre For Geosciences GFZ)

  • O. B. A. Agbaje

    (Macquarie University)

  • O. Branson

    (Research School of Earth Sciences, Australian National University)

  • S. M. Eggins

    (Research School of Earth Sciences, Australian National University)

Abstract

The calcium carbonate shells of planktic foraminifera provide our most valuable geochemical archive of ocean surface conditions and climate spanning the last 100 million years, and play an important role in the ocean carbon cycle. These shells are preserved in marine sediments as calcite, the stable polymorph of calcium carbonate. Here, we show that shells of living planktic foraminifers Orbulina universa and Neogloboquadrina dutertrei originally form from the unstable calcium carbonate polymorph vaterite, implying a non-classical crystallisation pathway involving metastable phases that transform ultimately to calcite. The current understanding of how planktic foraminifer shells record climate, and how they will fare in a future high-CO2 world is underpinned by analogy to the precipitation and dissolution of inorganic calcite. Our findings require a re-evaluation of this paradigm to consider the formation and transformation of metastable phases, which could exert an influence on the geochemistry and solubility of the biomineral calcite.

Suggested Citation

  • D. E. Jacob & R. Wirth & O. B. A. Agbaje & O. Branson & S. M. Eggins, 2017. "Planktic foraminifera form their shells via metastable carbonate phases," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00955-0
    DOI: 10.1038/s41467-017-00955-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00955-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00955-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Connor A. Schmidt & Eric Tambutté & Alexander A. Venn & Zhaoyong Zou & Cristina Castillo Alvarez & Laurent S. Devriendt & Hans A. Bechtel & Cayla A. Stifler & Samantha Anglemyer & Carolyn P. Breit & C, 2024. "Myriad Mapping of nanoscale minerals reveals calcium carbonate hemihydrate in forming nacre and coral biominerals," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00955-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.