Author
Listed:
- Shuxin Wang
(Carnegie Mellon University
Anhui University)
- Hadi Abroshan
(Carnegie Mellon University)
- Chong Liu
(University of Pittsburgh)
- Tian-Yi Luo
(University of Pittsburgh)
- Manzhou Zhu
(Anhui University)
- Hyung J. Kim
(Carnegie Mellon University
Korea Institute for Advanced Study)
- Nathaniel L. Rosi
(University of Pittsburgh)
- Rongchao Jin
(Carnegie Mellon University)
Abstract
It has long been a challenge to dope metal nanoparticles with a specific number of heterometal atoms at specific positions. This becomes even more challenging if the heterometal belongs to the same group as the host metal because of the high tendency of forming a distribution of alloy nanoparticles with different numbers of dopants due to the similarities of metals in outmost electron configuration. Herein we report a new strategy for shuttling a single Ag or Cu atom into a centrally hollow, rod-shaped Au24 nanoparticle, forming AgAu24 and CuAu24 nanoparticles in a highly controllable manner. Through a combined approach of experiment and theory, we explain the shuttling pathways of single dopants into and out of the nanoparticles. This study shows that the single dopant is shuttled into the hollow Au24 nanoparticle either through the apex or side entry, while shuttling a metal atom out of the Au25 to form the Au24 nanoparticle occurs mainly through the side entry.
Suggested Citation
Shuxin Wang & Hadi Abroshan & Chong Liu & Tian-Yi Luo & Manzhou Zhu & Hyung J. Kim & Nathaniel L. Rosi & Rongchao Jin, 2017.
"Shuttling single metal atom into and out of a metal nanoparticle,"
Nature Communications, Nature, vol. 8(1), pages 1-7, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00939-0
DOI: 10.1038/s41467-017-00939-0
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00939-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.