Author
Listed:
- Toph Allen
(EcoHealth Alliance)
- Kris A. Murray
(Imperial College London
Imperial College London)
- Carlos Zambrana-Torrelio
(EcoHealth Alliance)
- Stephen S. Morse
(Columbia University)
- Carlo Rondinini
(Sapienza University of Rome)
- Moreno Di Marco
(University of Queensland
The University of Queensland)
- Nathan Breit
(EcoHealth Alliance)
- Kevin J. Olival
(EcoHealth Alliance)
- Peter Daszak
(EcoHealth Alliance)
Abstract
Zoonoses originating from wildlife represent a significant threat to global health, security and economic growth, and combatting their emergence is a public health priority. However, our understanding of the mechanisms underlying their emergence remains rudimentary. Here we update a global database of emerging infectious disease (EID) events, create a novel measure of reporting effort, and fit boosted regression tree models to analyze the demographic, environmental and biological correlates of their occurrence. After accounting for reporting effort, we show that zoonotic EID risk is elevated in forested tropical regions experiencing land-use changes and where wildlife biodiversity (mammal species richness) is high. We present a new global hotspot map of spatial variation in our zoonotic EID risk index, and partial dependence plots illustrating relationships between events and predictors. Our results may help to improve surveillance and long-term EID monitoring programs, and design field experiments to test underlying mechanisms of zoonotic disease emergence.
Suggested Citation
Toph Allen & Kris A. Murray & Carlos Zambrana-Torrelio & Stephen S. Morse & Carlo Rondinini & Moreno Di Marco & Nathan Breit & Kevin J. Olival & Peter Daszak, 2017.
"Global hotspots and correlates of emerging zoonotic diseases,"
Nature Communications, Nature, vol. 8(1), pages 1-10, December.
Handle:
RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00923-8
DOI: 10.1038/s41467-017-00923-8
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00923-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.