IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00741-y.html
   My bibliography  Save this article

Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer

Author

Listed:
  • Zheng Han

    (Case Western Reserve University)

  • Xiaohui Wu

    (Case Western Reserve University)

  • Sarah Roelle

    (Case Western Reserve University)

  • Chuheng Chen

    (Case Western Reserve University)

  • William P. Schiemann

    (Case Western Reserve University)

  • Zheng-Rong Lu

    (Case Western Reserve University
    Case Western Reserve University)

Abstract

Molecular imaging of cancer biomarkers is critical for non-invasive accurate cancer detection and risk-stratification in precision healthcare. A peptide-targeted tri-gadolinium nitride metallofullerene, ZD2-Gd3N@C80, is synthesised for sensitive molecular magnetic resonance imaging of extradomain-B fibronectin in aggressive tumours. ZD2-Gd3N@C80 has superior r 1 and r 2 relaxivities of 223.8 and 344.7 mM−1 s−1 (1.5 T), respectively. It generates prominent contrast enhancement in aggressive MDA-MB-231 triple negative breast cancer in mice at a low dose (1.7 µmol kg−1, 1 T), but not in oestrogen receptor-positive MCF-7 tumours. Strong tumour contrast enhancement is consistently observed in other triple negative breast cancer models, but not in low-risk slow-growing tumours. The dose of the contrast agent for effective molecular MRI is only slightly higher than that of ZD2-Cy5.5 (0.5 µmol kg−1) in fluorescence imaging. These results demonstrate that high-sensitivity molecular magnetic resonance imaging with ZD2-Gd3N@C80 may provide accurate detection and risk-stratification of high-risk tumours for precision healthcare of breast cancer.

Suggested Citation

  • Zheng Han & Xiaohui Wu & Sarah Roelle & Chuheng Chen & William P. Schiemann & Zheng-Rong Lu, 2017. "Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00741-y
    DOI: 10.1038/s41467-017-00741-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00741-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00741-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongwei Lu & An Chen & Xindan Zhang & Zixiang Wei & Rong Cao & Yi Zhu & Jingxiong Lu & Zhongling Wang & Leilei Tian, 2022. "A pH-responsive T1-T2 dual-modal MRI contrast agent for cancer imaging," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00741-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.