IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00558-9.html
   My bibliography  Save this article

Controlling selectivities in CO2 reduction through mechanistic understanding

Author

Listed:
  • Xiang Wang

    (Pacific Northwest National Laboratory)

  • Hui Shi

    (Pacific Northwest National Laboratory)

  • János Szanyi

    (Pacific Northwest National Laboratory)

Abstract

Catalytic CO2 conversion to energy carriers and intermediates is of utmost importance to energy and environmental goals. However, the lack of fundamental understanding of the reaction mechanism renders designing a selective catalyst inefficient. Here we show the correlation between the kinetics of product formation and those of surface species conversion during CO2 reduction over Pd/Al2O3 catalysts. The operando transmission FTIR/SSITKA (Fourier transform infrared spectroscopy/steady-state isotopic transient kinetic analysis) experiments demonstrates that the rate-determining step for CO formation is the conversion of adsorbed formate, whereas that for CH4 formation is the hydrogenation of adsorbed carbonyl. The balance of the hydrogenation kinetics between adsorbed formates and carbonyls governs the selectivities to CH4 and CO. We apply this knowledge to the catalyst design and achieve high selectivities to desired products.

Suggested Citation

  • Xiang Wang & Hui Shi & János Szanyi, 2017. "Controlling selectivities in CO2 reduction through mechanistic understanding," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00558-9
    DOI: 10.1038/s41467-017-00558-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00558-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00558-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Yang Liu & Jianhui Sun & Houhou Huang & Linlu Bai & Xiaomeng Zhao & Binhong Qu & Lunqiao Xiong & Fuquan Bai & Junwang Tang & Liqiang Jing, 2023. "Improving CO2 photoconversion with ionic liquid and Co single atoms," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Vijay K. Velisoju & Jose L. Cerrillo & Rafia Ahmad & Hend Omar Mohamed & Yerrayya Attada & Qingpeng Cheng & Xueli Yao & Lirong Zheng & Osama Shekhah & Selvedin Telalovic & Javier Narciso & Luigi Caval, 2024. "Copper nanoparticles encapsulated in zeolitic imidazolate framework-8 as a stable and selective CO2 hydrogenation catalyst," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00558-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.