IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00553-0.html
   My bibliography  Save this article

Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium

Author

Listed:
  • Cayla E. Jewett

    (University of Denver)

  • Timothy E. Vanderleest

    (University of Denver)

  • Hui Miao

    (University of Denver)

  • Yi Xie

    (University of Denver)

  • Roopa Madhu

    (University of Denver)

  • Dinah Loerke

    (University of Denver)

  • J. Todd Blankenship

    (University of Denver)

Abstract

The coordination between membrane trafficking and actomyosin networks is essential to the regulation of cell and tissue shape. Here, we examine Rab protein distributions during Drosophila epithelial tissue remodeling and show that Rab35 is dynamically planar polarized. Rab35 compartments are enriched at contractile interfaces of intercalating cells and provide the first evidence of interfacial monopolarity. When Rab35 function is disrupted, apical area oscillations still occur and contractile steps are observed. However, contractions are followed by reversals and interfaces fail to shorten, demonstrating that Rab35 functions as a ratchet ensuring unidirectional movement. Although actomyosin forces have been thought to drive interface contraction, initiation of Rab35 compartments does not require Myosin II function. However, Rab35 compartments do not terminate and continue to grow into large elongated structures following actomyosin disruption. Finally, Rab35 represents a common contractile cell-shaping mechanism, as mesoderm invagination fails in Rab35 compromised embryos and Rab35 localizes to constricting surfaces.

Suggested Citation

  • Cayla E. Jewett & Timothy E. Vanderleest & Hui Miao & Yi Xie & Roopa Madhu & Dinah Loerke & J. Todd Blankenship, 2017. "Planar polarized Rab35 functions as an oscillatory ratchet during cell intercalation in the Drosophila epithelium," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00553-0
    DOI: 10.1038/s41467-017-00553-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00553-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00553-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nabila Founounou & Reza Farhadifar & Giovanna M. Collu & Ursula Weber & Michael J. Shelley & Marek Mlodzik, 2021. "Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00553-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.