IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00441-7.html
   My bibliography  Save this article

Exact broadband excitation of two-level systems by mapping spins to springs

Author

Listed:
  • Jr-Shin Li

    (Washington University in St Louis)

  • Justin Ruths

    (University of Texas at Dallas)

  • Steffen J. Glaser

    (Technical University of Munich)

Abstract

Designing accurate and high-fidelity broadband pulses is an essential component in conducting quantum experiments across fields from protein spectroscopy to quantum optics. However, constructing exact and analytic broadband pulses remains unsolved due to the nonlinearity and complexity of the underlying spin system dynamics. Here, we present a nontrivial dynamic connection between nonlinear spin and linear spring systems and show the surprising result that such nonlinear and complex pulse design problems are equivalent to designing controls to steer linear harmonic oscillators under optimal forcing. We derive analytic broadband π/2 and π pulses that perform exact, or asymptotically exact, excitation and inversion over a defined bandwidth, and also with bounded amplitude. This development opens up avenues for pulse sequence design and lays a foundation for understanding the control of two-level systems.

Suggested Citation

  • Jr-Shin Li & Justin Ruths & Steffen J. Glaser, 2017. "Exact broadband excitation of two-level systems by mapping spins to springs," Nature Communications, Nature, vol. 8(1), pages 1-5, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00441-7
    DOI: 10.1038/s41467-017-00441-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00441-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00441-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00441-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.