IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00363-4.html
   My bibliography  Save this article

Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes

Author

Listed:
  • Lei Li

    (University of Science and Technology of China)

  • Tianjun Gong

    (University of Science and Technology of China)

  • Xi Lu

    (University of Science and Technology of China)

  • Bin Xiao

    (University of Science and Technology of China)

  • Yao Fu

    (University of Science and Technology of China)

Abstract

Organoboron compounds play an irreplaceable role in synthetic chemistry and the related transformations based on the unique reactivity of C–B bond are potentially the most efficient methods for the synthesis of organic molecules. The synthetic importance of multiboron compounds in C–C bond formation and function transformation reactions is growing and the related borations of activated or nonactivated alkenes have been developed recently. However, introducing directly two boron moieties into the terminal sites of alkenes giving 1,1-diborylalkanes in a catalytic fashion has not been explored yet. Here we describe a synthetic strategy of 1,1-diborylalkanes via a Ni-catalyzed 1,1-diboration of readily available terminal alkenes. This methodology shows high level of chemoselectivity and regioselectivity and can be used to convert a large variety of terminal alkenes, such as vinylarenes, aliphatic alkenes and lower alkenes, to 1,1-diborylalkanes.

Suggested Citation

  • Lei Li & Tianjun Gong & Xi Lu & Bin Xiao & Yao Fu, 2017. "Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00363-4
    DOI: 10.1038/s41467-017-00363-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00363-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00363-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wangzhen Qiu & Lihao Liao & Xinghua Xu & Hongtai Huang & Yang Xu & Xiaodan Zhao, 2024. "Catalytic 1,1-diazidation of alkenes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00363-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.