IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00184-5.html
   My bibliography  Save this article

Spin caloritronic nano-oscillator

Author

Listed:
  • C. Safranski

    (University of California)

  • I. Barsukov

    (University of California)

  • H. K. Lee

    (University of California)

  • T. Schneider

    (University of California
    Institute of Ion Beam Physics and Materials Research)

  • A. A. Jara

    (University of California)

  • A. Smith

    (University of California)

  • H. Chang

    (Colorado State University)

  • K. Lenz

    (Institute of Ion Beam Physics and Materials Research)

  • J. Lindner

    (Institute of Ion Beam Physics and Materials Research)

  • Y. Tserkovnyak

    (University of California)

  • M. Wu

    (Colorado State University)

  • I. N. Krivorotov

    (University of California)

Abstract

Energy loss due to ohmic heating is a major bottleneck limiting down-scaling and speed of nano-electronic devices, and harvesting ohmic heat for signal processing is a major challenge in modern electronics. Here, we demonstrate that thermal gradients arising from ohmic heating can be utilized for excitation of coherent auto-oscillations of magnetization and for generation of tunable microwave signals. The heat-driven dynamics is observed in Y3Fe5O12/Pt bilayer nanowires where ohmic heating of the Pt layer results in injection of pure spin current into the Y3Fe5O12 layer. This leads to excitation of auto-oscillations of the Y3Fe5O12 magnetization and generation of coherent microwave radiation. Our work paves the way towards spin caloritronic devices for microwave and magnonic applications.

Suggested Citation

  • C. Safranski & I. Barsukov & H. K. Lee & T. Schneider & A. A. Jara & A. Smith & H. Chang & K. Lenz & J. Lindner & Y. Tserkovnyak & M. Wu & I. N. Krivorotov, 2017. "Spin caloritronic nano-oscillator," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00184-5
    DOI: 10.1038/s41467-017-00184-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00184-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00184-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Divinskiy & H. Merbouche & V. E. Demidov & K. O. Nikolaev & L. Soumah & D. Gouéré & R. Lebrun & V. Cros & Jamal Ben Youssef & P. Bortolotti & A. Anane & S. O. Demokritov, 2021. "Evidence for spin current driven Bose-Einstein condensation of magnons," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Haowen Ren & Xin Yu Zheng & Sanyum Channa & Guanzhong Wu & Daisy A. O’Mahoney & Yuri Suzuki & Andrew D. Kent, 2023. "Hybrid spin Hall nano-oscillators based on ferromagnetic metal/ferrimagnetic insulator heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00184-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.